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Abstract. We consider the solution of a (generalized) eigenvalue prob-
lem arising in physical oceanography that involves the evaluation of
both the tangent-linear and adjoint versions of the underlying numer-
ical model. Two different approaches are discussed: First, tangent-linear
and adjoint models are generated by the software tool TAF and used
separately. Second, the two models are combined into a single coupled
derivative model based on optimally preaccumulated local gradients of
all scalar assignments.

1 Introduction

A major focus in understanding the ocean circulation’s role in the variability,
on time scales of decades to millennia and beyond, of the climate system is put
on understanding the so-called ’thermohaline’ circulation (THC). This refers
to the contribution to that aspect of the ocean circulation which is driven by
density gradients and thus controlled by temperature and salinity properties
and its associated fluxes (but see [1], for problems of its isolated discussion). It
is believed to play a crucial role in connecting the surface to the deep ocean
through deep-water formation which occur at some isolated convection sites at
high latitudes mainly in the North Atlantic, such as the Labrador Sea and the
Greenland-Trminger-Norwegian (GIN) Seas.

Because of its relatively small variability over the past few thousand years
in contrast to potentially large changes on glacial-interglacial time scales, it’s
dynamics may be well described by modal behavior of linear dynamics such as
stochastically (or realistically) forced damped oscillations. Major changes in the
THC are then ascribed to either stochastic forcing across the stability thresh-
old, shifting the system between stable equilibria, or nonlinear effects such as
self-sustained oscillations. In addressing what triggers instabilities in the climate
system, comparatively little attention has been given to systems which are non-
normal, i.e. which exhibit non-orthogonal eigenmodes (beginning with [2]; see
[3] and references therein). Such systems, albeit linear, can undergo large tran-
sient amplifications. In [4] these ideas were applied to a simplified box model
of the THC serves as a paradigm model to capture some essential features of



the circulation [5,6]. The authors demonstrate how, for a given optimality con-
dition (norm), a set of initial conditions of temperature and salinity may be
determined which maximize the transient amplification of the THC. From an
automatic differentiation (AD) [7] point of view, their approach is interesting
for two reasons: (i): their calculation involves both the tangent linear (TLM)
and the adjoint (ADM) operator of the model, (ii): their approach can be gener-
alized to a coupled atmosphere-ocean model of intermediate complexity, or even
to a fully-fledged general circulation model (GCM), for which AD becomes a
crucial ingredient in deriving the TLM and ADM.

For the present purpose, our focus remains on the simple box model, for
which we wish to derive the TLM and ADM by means of AD. The box model is
introduced in the following section. The optimality problem is stated in Section
3. Section 4 briefly describes how the TLM and ADM were generated by means
of FastOpt’s AD tool TAF (Transformation of Algorithms in Fortran) [8,9]. The
main reason for choosing this tool is that it has been applied successfully to gen-
erate efficient derivative code of MIT’s parallel ocean general circulation model
(MITgcm), [10-14], and will thus play an important part in the generalization
of the box model study to a GCM.

An algorithm for coupling the TLM and ADM is presented in Section 5. It is
based on optimally preaccumulated gradients of scalar assignments [15, 16]. Both
approaches are compared and conclusions are drawn in Section 7 in the light of
current work on a new infra-structure for the implementation of next-generation
AD algorithms.

2 A simple model of the thermohaline circulation
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Fig. 1. A simple model of the thermohaline circulation

Some important aspects of linear dynamics of the THC in the North Atlantic
are captured by a simple 3-box model [4, 17], see Figure 1. Box 1 represents the
shallow surface waters between the equator and the sub-polar ocean. Box 2



reflects the dynamics of the polar ocean and its role in deep water formation.
Box 3 captures the deep ocean at low and mid latitudes. The model state is
represented by properties of temperature 7; and salinity S; in each of the three
boxes, 2 = 1,...,3. The dynamics is governed by a set of equations; here, we
only state the sub-set for box 1 for the case U > 0, the full set of equations can
be found in [17]:

U =uo{p2 — [dp1 + (1= 6)ps]}
pi = —al; + BS;, 1=1,...,3
d

—Th =U(Ty = T1)/Vy + Filoe (1)

d w
ESl :U(Sg — Sl)/Vl =+ Flf

U denotes the net density-driven transport between the boxes with mean trans-
port ug, density p; is inferred via a linear equation of state with thermal expan-
sion coefficient @ and J3, and tracer advection terms dT}/dt, dS;/dt for tempera-
ture and salinity. V; refers to the volume of each box, while ¢ Flfw denote
external forcing due to air-sea fluxes of heat (or temperature relaxation) and
freshwater, respectively. The full set of parameter choices are given in [4]. The
model is stepped forward in time by a standard upwind differencing scheme.

3 The optimality criterion

The time-evolving temperature and salinity in each box together define a six-
dimensional state vector

P = [TlaTZaTSaSIaSQaSEB]T 3 (2)
which, for the linear system considered here, evolve in time according to
P(r) = M(r,0)P(0) (3)

with model propagator M(r,0) between ¢ =0 and ¢ = .
Following [4], we may formulate a projection R of the model state onto the
THC transport U according to

U=-R-P (4)
and define an associated norm U? = ||X||? of the THC strength whose matrix
representation is of the form

Xij = Ri Ry . ()

We then wish to find an initial condition P(¢ = 0) which maximizes the THC
strength
J(r) = P(r)T X P(r) (6)



at some final time ¢ = 7 under the side condition that the initial condition have
norm unity for a given (possibly different) norm Y at ¢ = 0,

J(0) = P(O)TY P(0) . (7)

This leads to a constrained optimization problem which can be solved by the
method of Lagrange multipliers. The optimal initial conditions are then found
to be those, which fulfill the generalized eigenvalue problem

MT(r,0)X M (1,0)e = \Xe (8)

with (generalized) eigenvalues and vectors A and e, respectively. Here, M (7,0)
denotes the tangent linear operator of the model M, and M7 (r,0) its adjoint
(transpose).

This problem can be readily solved in MATLAB [4]. However, in the present
context of an implementation in FORTRAN, and in view of future extensions
to fully-fledged ocean models, an alternative iterative strategy is adopted:

1. At a given iteration n, a given estimate e, is used to compute
Yo = M7(1,0) X M(r,0)e, (9)

by means of the tangent linear and adjoint operator

2. Yy, and e, are provided to an Implicitly Restarted Arnoldi Iteration Routine,
ARPACK [18], which yields new estimates e,4+1 and Ap41.

This method enables an efficient computation of the leading eigenvectors
and eigenvalues for large-scale applications, for which the dimension of the state
space is large ( ~ 107 for ocean GCM’s).

4 Automatic TLM and ADM Generation via TAF

The generation of the tangent-linear model via TAF is straightforward: providing
the dependent variables (final state) and independent variables (initial state),
TAF produces readable tangent linear code which can be readily used.

For the adjoint code, a few interventions were made in order to deal with state
variables that are required in evaluating the derivative expressions in reverse
order. The time stepping loop was split into a two-level checkpointing (see e.g.
[19,8,13]) according to nTimeSteps = nOuter x nInner. The model state is then
stored to disk once every nOuter time steps. At these instances the model picks
up to recompute over an interval of nInner time steps. Over this interval only it
stores the required variables at each time step to common blocks to be available
in reverse mode. This enables an efficient balance of storing vs. recomputation
at the cost of one additional model integration and some extra memory.



5 Coupling TLM and ADM

The model M implements a vector function F : IR® — IR® such that y = F(x),
where x represents the initial and y the final state as in Section 4. The Jacobian
at some point xg is denoted by F’ € IR®*®. At each iteration of the algorithm
used in Section 4 we are computing y = F’-x followed by x = (F')T . y. Instead
of generating two separate tangent-linear and adjoint versions of F' we are now
combining both into one derivative model.

An augmented version of TLM performs the following steps for all assign-
ments v = f(u) in the original model: (A) Generation of code list; (B) local ac-
tivity analysis and linearization; (C) optimal preaccumulation of gradient using
the algorithm described in [16]; (D) computation of the inner product v = f' -,
where f' denotes the gradient of f; (E) storage of entries of f’ on a stack (also
known as the tape). An example is discussed in Section 6.

The local gradients are restored in reverse order to propagate adjoints back-
ward through the code for each statement v = f(u) as u = v - f'. In contrast
with the method described in Section 4, these gradients are computed only once
and used in both TLM and ADM. A downside of this approach is the require-
ment to store the entire derivative information. This may not be feasible for
larger problems. On the other hand, local gradients of scalar assignments can be
preaccumulated optimally [16,15], which may lead to a further reduction of the
computational effort.

Steps (A)-(D) are fully automated at the graph level and implemented as
part of the XAIFBooster library that is being developed at Argonne National
Laboratory. It uses a language-independent intermediate format for the semantic
transformation of numerical programs called XATIF [20]. A protocol of how the
transformation of the assignments in subroutine box_timestep was done can
be found under http://www-unix.mcs.anl.gov/ naumann/iccsa03. The actual
code generation was done manually. Work is in progress to interface the library
with front-ends for both C/C++ and Fortran 95 in order to provide a new
software tool for AD.

From the viewpoint of differentiation the information provided by the output
of the XAIFBooster module is nearly sufficient to generate both tangent-linear
and adjoint models in general. We have correct (and efficient) gradient code for
all statements and the information on the corresponding locally dependent and
independent variables. All we need in addition to this are correct unparsers and
for adjoint models a mechanism to reverse the flow of control. The latter turned
out to be trivial for the simple box model at hand. Although this approach is
certainly feasible, it may not be optimal in many cases.

The full automization of the entire process is the subject of ongoing work at
Argonne National Laboratory and Rice University. In collaboration with scien-
tists at M.I.T. a new infra-structure for the implementation of AD algorithms
is developed. This work is supported by NSF under its I'TR program. See also
http://wuw.autodiff.org/ACTS for further information on the project.



The source code of the coupled tangent-linear / adjoint model that is based on
optimally preaccumulated local gradients of scalar assignments can be accessed
online under http://www-unix.mcs.anl.gov/ naumann/iccsa03.

6 Optimal Statement-level Gradient Accumulation

Using the first assignment from subroutine box_timestep we sketch the algo-
rithm used to preaccumulate the local gradients. A more complete description
of the procedure as well as proofs for its optimality regarding the computational
effort can be found in [16].
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Fig. 2. Manipulation of the Computational Graph

Original statement. The original statement has the following form.



dF1dDt(1) = ( extForLoc(1)
& + gammaLoc*( fldStar(1) - fldNow(1) )#*vol(1)
& + uVelLoc* (fldNow(3)-fldNow(1))) / vol(1)

Tts computational graph G is shown in Figure 2(0). We are interested in the
gradient of the dependent variable dF1dDt (1) with respect to the independent
variables f1dNow (1), fldNow(3) and uVelLoc. Our objective is convert G into
the bipartite graph in Figure 2(2) whose edge labels represent exactly the entries
of the gradient [21].

Code List. The aim of an optimized code list is to assign only those intermediate
values to auxiliary variables that are used by the computation of some local par-
tial derivative. In our case this applies only to the value of £1dNow(3)-f1dNow(1).
Thus, the number of new variables to be generated in the augmented TLM can
be kept minimal. The following two assignments are generated:

xb_aux_4=f1dNow(3)-f1ldNow(1)

dF1dDt (1) =( extForLoc(1)
& + gammaLoc*( fldStar(1) - fldNow(1) )*vol(1)
& + uVelLoc* xb_aux_4) / vol(1)

Local Activity Analysis. The statement has three active [22] inputs (f1dNow(1),
f1dNow(3) and uVelLoc) represented by the independent vertices 1,9, and 11 in
G. Vertices that can be reached from some independent vertex via a path in G
are active (2,4,6,8,10,12,13,14). All other vertices are passive (0,3,5,7). Outedges
of passive vertices are labeled with 0 in Figure 2(1) as the local partial derivative
with respect to a passive variable vanishes identically.

Local Partial Derivatives and Elimination Procedure. The computational graph
is linearized by attaching the local partial derivatives of the elemental functions
with respect to their arguments to the corresponding edges. The result is shown
in Figure 2(1), where the partial derivatives are enclosed in square brackets.

Constant labels of incident edges can be folded [23] at compile-time. If (1, )
is labeled with ¢; ; and (j, k) with ¢ ; and both ¢;; and ¢ ; are constants then
the value of ¢;; - cx ; can be evaluated and (¢, j) can be front eliminated [24] at
compile-time. Notice, that (7, k) must be the only edge emanating from j since
G is a single-expression-use graph as in [15].

Trivial edges, labelled with 1 or -1, are back eliminated at no extra cost. This
leads to the graph in Figure 2(3). The front elimination of either (1, 10) or (9, 10)
would not preserve optimality since 10 has more than one predecessor and its
successor is not equal to the dependent vertex. Refer to [16] for proofs of these
results and a more complete description of the constant folding algorithm.

The graph in Figure 2(3) is reduced to the bipartite graph in Figure 2(2)
that represents the local gradient by the optimal preaccumulation algorithm for
single-expression-use graphs described in [15]. Vertex 4 is eliminated (leading to
the graph in Figure 2(4)) followed by 12 (Figure 2(5)) and 10. The latter does



not result in any scalar floating-point multiplications since all its inedges are
trivial. As a common subexpression in all gradient entries 1/v5 is assigned to an
auxiliary variable. The code resulting from this elimination is shown below.

c_14_13=1./vol(1)
c_14_11=xb_aux_4*c_14_13
c_14_10=uVelloc*c_14_13
c_14_1=-gammaLoc*vol(1)*c_14_13
c_14_9=c_14_10
c_14_1=c_14_1-c_14_10

Computation of Directional Derivative. Finally, the entries of the gradient are
used to compute the directional derivative dF1dDt _ d(1) as

dF1dDt_d(1)=c_14_11*uVellLoc_d+
& c_14_1%f1dNow_d(1)+c_14_9*f1dNow_d(3)

Following this, the local gradient is stored on the tape.

Computation of Adjoints. After restoring the values for c_14.1, ¢ 14 9, and
c_14_11 they are used to compute the corresponding adjoints as

fldNow_a(3)=f1dNow_a(3)+c_14_9*dF1dDt_a(1)
fldNow_a(1)=fldNow_a(1)+c_14_1*dF1dDt_a(1)
uVelLoc_a=uVelLoc_a+c_14_11*dF1dDt_a(1)
dF1dDt_a(1)=0

A formal proof for the statement-level optimality of the above approach can be

found in [25].

7 Comparison and Conclusion

|Separate TLM and ADM|Coupled TLM and ADM
without compiler 0ptimization| 286 265
with compiler optimization | 167 183

Table 1. Runtime (in sec.) of 10,000 TLM / ADM evaluations

We compared the elapsed times for 10,000 evaluations of the TLM / ADM. The
results are displayed in Table 1. They depend strongly on the code optimizations
performed by the compiler (g77, in this case, with or without -03 option acti-
vated). The coupled TLM-ADM approach generates more efficient source code
and is superior if compiler optimization is switched off. On the other hand, its
memory requirements are higher than those of the adjoint code generated by
TAF and featuring a two-level checkpointing strategy. The repeated recomputa-
tions performed by the TAF-generated adjoint code carry not much weight for
our very simple example. Moreover, the real power of the local gradient accumu-
lation algorithms proposed in [15, 16] cannot be exploited either, because of the



relative simplicity of the single statements. Enabling full compiler optimizations
turns the emphasis with regard to the overall performance towards the mem-
ory traffic. There the coupled TLM-ADM looses because of the requirement to
store all the local gradients of the assignments. The number of floating-point
operations to be performed during the accumulation of these gradients is small.

The theoretical optimality of the local gradient accumulation routine is not
sufficient to compensate the runtime increase resulting from higher memory re-
quirements. This is not very surprising as the storage of local gradient entries
increases the amount of memory required by a factor that is equal to the number
of active arguments on the right hand side of the assignment compared to the
strategy of storing values of intermediate variables. This is no longer the case If
the preaccumulation can be applied to local Jacobians at the basic-block level
this is no longer the case. There the minimization of the number of edges in the
local linearized computational graph can lead to a decrease in the amount of
memory required.

We conclude that the development of efficient techniques for coupling tangent-
linear and adjoint models represents a challenging research area in the field of
automatic differentiation. Most likely, useful approaches will represent heuristic
compromises between local preaccumulation techniques and hierarchical check-
pointing algorithms.

Acknowledgments

This work was supported by the National Science Foundation’s Information
Technology Research Program under Contract OCE-0205590 (“Adjoint Com-
piler Technology and Standards”).

Naumann was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Comput-
ing Research, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. Wunsch, C.: What is the thermohaline circulation. Science 298 (2002) 1179

2. Farrell, B.: Optimal excitation of neutral rossby waves. J. Atmos. Sci. 45 (1988)
163-172

3. Farrell, B., loannou, P.: Perturbation growth and structure in uncertain flows. part
i. J. Atmos. Sci. 59 (2002a) 2629

4. Tziperman, E., loannou, P.: Transient growth and optimal excitation of thermo-
haline variability. J. Phys. Oceanogr. 32 (2002) 3427

5. Stommel, H.: Thermohaline convection with two stable regimes of flow. Tellus 13
(1961) 224-230

6. Tziperman, E.: Inherently unstable climate behaviour due to weak thermohaline
ocean circulation. Nature 386 (1997) 592-595

7. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation. STAM, Philadelphia (2000)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Transac-

tions on Mathematical Software 24 (1998) 437-474

Giering, R.: Transformation of algorithms in fortran (taf). user manual version
1.3). Technical report, FastOpt (2001) http://www.fastopt.de/taf.

Marotzke, J., Giering, R., Zhang, K., Stammer, D., Hill, C., Lee, T.: Construction
of the adjoint MIT ocean general circulation model and application to Atlantic
heat transport variability. J. Geophys. Res. 104, C12 (1999) 29,529-29,547
Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J.,
Adcroft, A., Hill, C., Marshall, J.: The global ocean circulation and transports
during 1992 — 1997, estimated from ocean observations and a general circulation
model. J. Geophys. Res. 107(C9) (2002a) 3118

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J.,
Adcroft, A., Hill, C., Marshall, J.: Volume, heat and freshwater transports of the
global ocean circulation 1993 —2000, estimated from a general circulation model
constrained by WOCE data. J. Geophys. Res. (2002b) in press.

Heimbach, P., Hill, C., Giering, R.: Automatic generation of efficient adjoint code
for a parallel navier-stokes solver. In J.J. Dongarra, P.M.A. Sloot and C.J.K.
Tan, ed.: Computational Science — ICCS 2002. Volume 2331 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin (Germany) (2002a) 1019-1028
Heimbach, P., Hill, C., Giering, R.: An efficient exact adjoint of the parallel mit
general circulation model, generated via automatic differentiation. Future Gener-
ation Computer Systems (FGCS) (2002b) submitted.

Naumann, U.: On optimal Jacobian accumulation for single expression use pro-
grams. Preprint ANL-MCS/P944-0402, Argonne National Laboratory (2002)
Naumann, U.: Automatic generation of optimal gradient code for scalar assign-
ments. Preprint ANL-MCS/P1020-0103, Argonne National Laboratory (2003)
Rivin, I., Tziperman, E.: Linear versus self-sustained interdecadal thermohaline
variability in a coupled box model. J. Phys. Oceanogr. 27 (1997) 1216

Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM, Philadelphia (1998)

Restrepo, J., Leaf, G., Griewank, A.: Circumvening storage limitations in varia-
tional data assimilation studies. SIAM J. Sci. Comput. 19 (1998) 1586-1605
Hovland, P., Naumann, U., Norris, B.: An XML-based platform for semantic trans-
formation of numerical programs. In: M. Hamza, ed., Software Engineering and
Applications, Proceedings of the Sixth IASTED International Conference. (2002)
530-538

Griewank, A., Reese, S.: On the calculation of Jacobian matrices by the Markovitz
rule. In: [26]. (1991) 126-135

Hascoét, L., Naumann, U., Pascual, V.: TBR analysis in reverse-mode Automatic
Differentiation. Elsevier Science (2002) under review.

Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA (1986)

Naumann, U.: Optimal accumulation of Jacobian matrices by elimination meth-
ods on the dual computational graph. Preprint ANL-MCS/P943-0402, Argonne
National Laboratory (2002) To appear in Math. Prog.

Naumann, U.: Statement-level optimality of tangent-linear and adjoint models.
Preprint ANL-MCS/P1021-0103, Argonne National Laboratory (2002)

Corliss, G., Griewank, A., eds.: Automatic Differentiation: Theory, Implementa-
tion, and Application. Proceedings Series, Philadelphia, STAM (1991)



